Sodium selenate mitigates tau pathology, neurodegeneration, and functional deficits in Alzheimer's disease models.

نویسندگان

  • Janet van Eersel
  • Yazi D Ke
  • Xin Liu
  • Fabien Delerue
  • Jillian J Kril
  • Jürgen Götz
  • Lars M Ittner
چکیده

Alzheimer's disease (AD) brains are characterized by amyloid-beta-containing plaques and hyperphosphorylated tau-containing neurofibrillary tangles (NFTs); however, in frontotemporal dementia, the tau pathology manifests in the absence of overt amyloid-beta plaques. Therapeutic strategies so far have primarily been targeting amyloid-beta, although those targeting tau are only slowly beginning to emerge. Here, we identify sodium selenate as a compound that reduces tau phosphorylation both in vitro and in vivo. Importantly, chronic oral treatment of two independent tau transgenic mouse strains with NFT pathology, P301L mutant pR5 and K369I mutant K3 mice, reduces tau hyperphosphorylation and completely abrogates NFT formation. Furthermore, treatment improves contextual memory and motor performance, and prevents neurodegeneration. As hyperphosphorylation of tau precedes NFT formation, the effect of selenate on tau phosphorylation was assessed in more detail, a process regulated by both kinases and phosphatases. A major phosphatase implicated in tau dephosphorylation is the serine/threonine-specific protein phosphatase 2A (PP2A) that is reduced in both levels and activity in the AD brain. We found that selenate stabilizes PP2A-tau complexes. Moreover, there was an absence of therapeutic effects in sodium selenate-treated tau transgenic mice that coexpress a dominant-negative mutant form of PP2A, suggesting a mediating role for PP2A. Taken together, sodium selenate mitigates tau pathology in several AD models, making it a promising lead compound for tau-targeted treatments of AD and related dementias.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P 62: Markers of Neuroinflammation Related to Alzheimer\'s Disease Pathology in the Elderly

Alzheimer Disease (AD) is a neurodegenerative disorder and the most common form of dementia. Increasing evidence suggests that Alzheimer's disease pathogenesis is not restricted to the neuronal compartment, but includes strong interactions with immunological mechanisms in the brain. In vitro and animal studies have linked neuroinflammation to Alzheimer's disease (AD) pathology. Studies on marke...

متن کامل

Transgenic mouse models of Alzheimer's disease: phenotype and mechanisms of pathogenesis.

A range of transgenic mice have been created to model Alzheimer's disease. These include mice expressing human forms of the amyloid precursor protein, the presenilins and, more recently, tau. Several of the models develop features of the disease including amyloid pathology, cholinergic deficits, neurodegeneration and cognitive impairment. Progress in the characterization and use of these model ...

متن کامل

Reduction of Nuak1 Decreases Tau and Reverses Phenotypes in a Tauopathy Mouse Model

Many neurodegenerative proteinopathies share a common pathogenic mechanism: the abnormal accumulation of disease-related proteins. As growing evidence indicates that reducing the steady-state levels of disease-causing proteins mitigates neurodegeneration in animal models, we developed a strategy to screen for genes that decrease the levels of tau, whose accumulation contributes to the pathology...

متن کامل

Tau Protein Mediates APP Intracellular Domain (AICD)-Induced Alzheimer’s-Like Pathological Features in Mice

Amyloid precursor protein (APP) is cleaved by gamma-secretase to simultaneously generate amyloid beta (Aβ) and APP Intracellular Domain (AICD) peptides. Aβ plays a pivotal role in Alzheimer's disease (AD) pathogenesis but recent studies suggest that amyloid-independent mechanisms also contribute to the disease. We previously showed that AICD transgenic mice (AICD-Tg) exhibit AD-like features su...

متن کامل

P 97: Neurodegeneration Induced by Tau protein

Tau is one of several types of microtubule-associated proteins (MAPs), responsible for the assembly and stability of microtubule networks that is present only in neurons and predominantly localized in axons which its functions are tightly regulated by phosphorylation. Via as yet unknown mechanisms, tau becomes hyperphosphorylated and accompanies with neuronal degeneration, loss of synapses...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 31  شماره 

صفحات  -

تاریخ انتشار 2010